Acta Crystallographica Section E

Structure Reports
Online
ISSN 1600-5368

Shi-Ping Yang, ${ }^{\text {a* }}$ Hong-Mei Chen, ${ }^{\text {a }}$ Fan Zhang, ${ }^{\text {a }}$ Qiong-Qiong Chen, ${ }^{\text {a }}$ Xi-Bin Yu, ${ }^{\text {a }}$ Ji-Guang Huang ${ }^{\text {b }}$ and Han-Hong Xu ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemistry, Shanghai Teachers' University, Shanghai 200234, People's Republic of China, and ${ }^{\mathbf{b}}$ Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, People's Republic of China

Correspondence e-mail: shipingy@shtu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.060$
$w R$ factor $=0.146$
Data-to-parameter ratio $=8.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Rotenone-acetic acid (2/1)

The structure determination of the title compound, a $2: 1$ adduct of rotenone and acetic acid, $2 \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, confirms that the rotenone molecule has an approximately V-shaped structure.

Comment

Rotenone is a naturally occurring heterocyclic compound widely used as an insecticide. It exerts its effects mainly by blocking oxidative phosphorylation and/or mitosis in cells through apparently separate pathways (Loffler \& Schneider, 1982). Information on the mode of action and selectivity of rotenone is important so that the compound may be used safely and efficiently. The three-dimensional structure of most biologically active molecules plays a role in governing their interactions and activities. Thus, in the course of a systematic study of the relation between the structure and bioactivity of rotenone, we have isolated the $2: 1$ adduct of rotenone and acetic acid, (I), and report here its preparation and structure.

Figure 1
A view of (I), showing the atom-numbering scheme and the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (as a dashed line) between one of the rotenone molecules and the acetic acid. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Received 30 January 2004
Accepted 2 March 2004
Online 13 March 2004

The X-ray diffraction analysis of (I) shows that there are two rotenone molecules and one acetic acid molecule in the asymmetric unit, as shown in Fig. 1. The distances and angles within the two rotenone molecules agree with those of related molecules (Begley et al., 1989, 1993).

The two rotenone molecules in (I) are very similar, with two nearly flat regions (rings I and II, and rings III, IV and V). In each rotenone molecule, ring II can be regarded as having an envelope conformation, whereas ring III adopts a 1,2-diplanar conformation (Bucourt, 1974), as indicated by the torsion angles (Table 1). The torsion angles in the five-membered ring V (Table 1) indicate an envelope conformation (Bucourt, 1974), with the isopropenyl group equatorial, as proposed earlier (Büchi et al., 1961; Carlson et al., 1973).

Except for the isopropenyl group, the non-H atoms of (I) lie close to the plane of aromatic rings I and IV, resulting in an approximately V -shaped molecule, with dihedral angles of 74.7 (1) and $74.8(1)^{\circ}$ between rings I and IV in the two molecules.

The acetic acid molecule is linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding to one of the rotenone molecules (Table 2). The packing of the molecules is governed by weak van der Waals interactions.

Experimental

Rotenone (5 g) in ethanoic acid (50 ml) was refluxed for 2 h . After cooling and filtration, the solution was allowed to stand in air at room temperature for two months, after which time a single crystal was obtained suitable for X-ray analysis.

Crystal data

$2 \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
$M_{r}=848.86$
Monoclinic, $P 2_{1}$ 。
$a=9.1356$ (16) A
$b=15.359$ (3) \AA
$c=15.082$ (3) A
$\beta=92.652(4)^{\circ}$
$V=2113.9(7) \AA^{3}$
$Z=2$

$$
D_{x}=1.334 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2045 reflections
$\theta=5.1-39.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.51 \times 0.20 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.952, T_{\text {max }}=0.994$
12858 measured reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060\)
\(w R\left(F^{2}\right)=0.146\)
\(S=0.95\)
5099 reflections
566 parameters
```


Figure 2
A view, down the b axis, of the molecular packing in (I).

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

O3-C5-C6-C7	-0.6 (6)	C32-O9-C28-C29	15.2 (6)
C5-C6-C7-C8	13.9 (6)	O8-C30-C31-C33	50.1 (5)
C6-C7-C8-C9	-41.7 (5)	C30-C31-C33-C34	-152.5 (5)
C7-C8-C9-O3	59.9 (5)	C31-C33-C34-C35	9.9 (4)
C8-C9-O3-C5	-46.6 (5)	C33-C34-C35-O8	1.7 (6)
C9-O3-C5-C6	17.1 (6)	C34-C35-O8-C30	2.1 (4)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10$	-49.9 (5)	C35-O8-C30-C31	-139.4 (4)
C8-C7-C10-C11	27.0 (5)	O4-C13-C14-C17	-0.9 (6)
C7-C10-C11-C12	-0.4 (6)	C13-C14-C17-C18	167.0 (5)
C10-C11-C12-O2	-4.9 (6)	C14-C7-C18-O4	0.9 (2)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 8$	-18.7 (5)	C7-C18-O4-C13	5.85 (13)
C12-O2-C8-C7	46.5 (5)	C18-O4-C13-C14	-168.3 (5)
O9-C28-C29-C30	-0.6 (7)	O10-C36-C37-C40	1.0 (6)
C28-C29-C30-C31	15.1 (6)	C36-C37-C38-C39	-0.4 (8)
C29-C30-C31-C32	-42.4 (5)	C37-C38-C39-O10	0.6 (4)
C30-C31-C32-O9	58.0 (5)	C38-C39-O10-C36	-179.4 (8)
C31-C32-O9-C28	-43.5 (5)	C39-O10-C36-C37	0.7 (4)

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13-\mathrm{H} 13 \cdots \mathrm{O} 7$	0.82	2.01	$2.776(7)$	155

Owing to the lack of atoms heavier than O , the absolute configuration of (I) could not be determined by X-ray analysis and the Friedel pairs were merged. The configuration was then assigned on the basis of the configuration of the starting rotenone (Rossi et al., 1988). All H atoms were positioned geometrically and refined using a riding model.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Sheldrick, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the NSFC (grant No. 30100118) and the Science Grant of SHTU (grant No. 870).

References

Begley, M. J., Crombie, L., Hadi, A. H. bin A. \& Josephs, J. L. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 204-208.
Begley, M. J., Crombie, L., Hadi, A. H. bin A. \& Josephs, J. L. (1993). J. Chem Soc. Perkin Trans. 1, pp. 2605-2609.
Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Büchi, G., Crombie, L., Godin, P. J., Kaltenbronn, J. S., Siddalingaiah, K. S. \& Whiting, D. A. (1961). J. Chem. Soc. pp. 2843-2860.
Bucourt, R. (1974). Top. Stereochem. 8, 159-175.

Carlson, D. G., Weisleder, D. \& Tallent, W. H. (1973). Tetrahedron, 29, 27312735.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Loffler, M. \& Schneider, F. (1982). Mol. Cell. Biochem. 48, 77-90.
Rossi, M., Fule, P. Z. \& Taylor, M. R. (1988). Bioorg. Chem. 16, 376387.

Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

